If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-12x-65=0
a = 1; b = -12; c = -65;
Δ = b2-4ac
Δ = -122-4·1·(-65)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{101}}{2*1}=\frac{12-2\sqrt{101}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{101}}{2*1}=\frac{12+2\sqrt{101}}{2} $
| 19x-3x-11x+3x=16 | | q+14=68 | | 3c=243c= | | 17n-7n+2n-n-7n=20 | | (x20-)=-15 | | n^2+16n-35=0 | | 7x-x-x=5 | | 12+20=17x | | 6x{2}-11x-7=0 | | 7×2x=63 | | 14g-13g=19 | | 6x^{2}-11x-7=0 | | 14j-11j=12 | | 9x+1+9x+1=540 | | 2k^2=5k+63 | | 3y-(-7)=12 | | 3t-t=6 | | q/2=60 | | 2x+3(2x+4)=44 | | 9x+1+9x+1=180 | | 3x+2=-2(x+4) | | 7k-k=6 | | (t+1)/6=13 | | 12-2k=16+2+ | | 3x+8=x+9= | | 9+3(m+5)=6m+3 | | 2x=6=7x-24 | | 9x+8x-14x=30000 | | –8=3h+4 | | 2y+5+4y=1 | | (x24-)=-25 | | 6-1x=17 |